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In the course of evolution the axis of rotation of a viscoelastic sphere approaches the 
normal to the orbital plane and the angular velocity of the sphere approaches the orbital 
angular velocity. 

Two small parameter k, and k, occur in (22), and k,< k,. Consequently, in the rotational 
motion of the sphere there are two evolutions, a rapid and a slow one. The rapid and a slow 
one. The rapid evolution is defined by (22) with k, ~0, when only the angle 'pa varies and 
the vector G describes a circular cone with axis of symmetry that coincides with the normal 
to the orbit. The slow evolution corresponds to terms that contain k, in (22) and defines 
the variation of the quantities I,,I,, I,. 
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THE PROBLEM OF THE OPTIMUM RAPID BRAKING OF AN AXISYMMETRIC SOLID 
ROTATING AROUND ITS CENTRE OF MASS* 

M.Z. BORSHCHEVSKII and I.V. IOSLOVICH 

The problem of the braking of a solid with an axisymmetric ellipsoid of 
inertia using three pairs of jet engines producing control moments directed 
along the principal axes of the ellipsoid of inertia /l-4/ is considered. 
The structure of the optimal trajectories is analyzed. It is shown that 
the four rays that lie in the plane normal to the axis of dynamic symmetry 
are not only the chase trajectories with special control /3/, but perform 
the part of main lines. The optimal trajectories reach the main lines 
after an infinite number of control reversals. Such trajectories which 
reach the main lines fill, in phase space, the outer region of two inter- 
secting circular cones encircling the axis of dynamic symmetry. 

1. Statement of the problem and formulation of the basis results. The 
problem of the most rapid braking of the rotation of asolidwitb an axisymmetric ellipsoid 
of inertia can be formulated as follows /l/. The system of Euler equations is given in the 
normal form 

x' = b,u,, y’ -= - Dzz + bpunr z’ = Dxy -t- b,us; D = (A - C) / B, B = A (1.1) 

with constraints 
1 uj 1 <; 1, i = I, 2, 3 (1.2) 

where r, Y, s are the projections of the vector of the instantaneous angular velocity of the 
solid in a moving system of coordinates attached to the principal axes of the centralellipsoid 
of inertia, uI are the controls, bi are constants, and A,B,C are the mOI&entS of inertia. It 

is required to transfer an arbitrary phase point of system (l.l), whose coordinates at the 
instant t =O are denoted by (rO, Y,, z,), into the origin of coordinates in the minimum time. 

*Prikl.Matem.Mekhan.,49,1,35-42,198s 
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We will introduce the following new variables: the distance r =(y" +z2)1/* of the phase 
point from the axis of dynamic symmetry x and the angle 0 between the y axis and the projection 
of the radius vector of the phase point on the plane z 10. From (l.l), when r>O we have 

the system 
Z' s b,u,, r’ = bZuI cos 8 + b, US sin 8 (1.3) 

8' = Dz - b2 sin 8u,r-' + b,ug-’ cos 0 

From the first of equations (1.3) we obtain the obvious estimate for the shortest braking 
time 

T* ,> 1 10 1 b,” = T_F,~ (1.4) 

The optimal phase trajectories that attain the estimate (1.4) do not have reversals of 

Ul and fill the inside of some surface, which was arbitrarily called in /l/ a "cone", and 
which passes through the origin of coordinates and encircles the x axis. 

Inside the cone we have the non-uniqueness of the solution of the problem with respect 
to the controls u,, us. 

The second estimate for the braking time is obtained from the second of equations (1.3) 
by maximizing its right side with respect to 6 with condition (1.2), from which it follows 
that r' > (bz2 -+ bs2)‘/* and 

T* > r,, (b*'J + ba*)-'l~= (y,," + ~g*)l/l (bz2 + bs’)-“* = 2’112 (1.5) 

The estimate (1.5) is obtained on the four rays lying in the s=O plane 

I Y I 1 I z I = b, 1 b, (1.6) 

with controls LL~ = 0, ut = - sgn y, us = - sign .z, which are particular solutions of the problem 

/3/. 
It will be shown that the rays (1.6) are main lines and are an accumulation of reversal 

points. This enables us to determine the overall picture of the synthesis qualitatively, and 
to construct and evaluate the converging sequences of approximate solutions. 

Theorem. It is possible to determine positive constants c,.e2, a, and a region Q in the 
coordinate space .r.$: z. such that the optimal trajectory of problem (1.11, (1.2), passing 
through any point M (5, Y, a) E QI reaches one of the rays (1.6) in a time not exceeding 
(11 I 5 I i- az, and proceeds to the origin of coordinates along this ray. The region Q contains 
points whose coordinates satisfy the inequalities 

(y2 + z*)'/: (b,* -I- bs2)-‘/z - a, / J ) - a, - a3 > 0 (1.7) 

2. Subsidiary constructions, Let us determine the functional of "losses" I on an 
arbitrary trajectory that transfers the phase point M(r,y,z) to the origin of coordinates 

for which we consider the quantity 6 = r’ + b (b = JfbSa + b,2). 

The non-negative quantity 6 defines the failure to reach the x axis at the instantaneous 
velocity compared with the maximum velocity possible. The functional of losses is calculated 
on the trajectory that transfers some point (z,y,z) to the origin of coordinates in time T 
as 

I=T6(t)dt=Sr(r’;b)dl=-_I/yl+r2fbT (2.1) 
0 0 

If the point (z,y,Z) is linked to the origin of coordinates by two trajectories, the 
functional of the losses is less on the trajectory which transfers the point to the origin 
of coordinates quicker, and conversely the trajectory with a smaller functional brings the 
point to the origin of coordinates more rapidly. This follows directly from (2.1). Thus 
the problem of the rapidity of action is equivalent to the problem of minimizing the functional 
of losses on the braking trajectory. 

Fairly small values of e(t) can be obtained only when the phase point is inside one of 
the two acute dihedral angles Bi (i = 1,2,3,4) formed by the planes that cross the x axis, are 
symmetric about one of the rays (1.6), and make with them fairly small angles *P. In this 
case with the control 

u2 = -sgn y, a3 = -sgn z (2.2) 

we have 

6 < b (1 - cos fi) (2.3) 

We construct around each of the rays (1.6) a region Vi(p) (Fig.1) boundedbythe respective 
dihedral angle Bi and two planes z = h and z = -h. We define the quantity h as follows: 

h = 1/qp! D -I- b sin fl/ (DR,) (2.4) 

where R, is some positive quantity. 
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Fig.1 

Then for any number R,> 0, a fairly small fir> 0, can be found such that when O< 
g< fll the following statement holds: if in some time interval [t_,t+] the phase point of 
system (1.1) does not reach the region V, (fi), and the distance of the phase point from the 
x axis is not less than R,, the integral of losses calculated in this interval satisfies the 
inequality 

f+ 

s t- s(t)dt>+(l-cos~l) (t+-t_- $g) (2.5) 

The proof of inequality (2.5) is given in Sect.4. 
We will introduce a special trajectory L whose functional of losses will serve as the 

upper estimate of the functional. of losses on the optimal trajectory. If (~0, ~0, zo) is some 
phase point at a fairly large distance from the x axis, then the respective special. trajectory 
brings it to one of rays (1.6), and then brings it along that ray to the origin of coordinates. 
We set uz = --sgny, ug = -sgnz on the trajectory L. The control ur is defined on the first 
section prior to reaching the plane 2=0 in a time z1 = 1 x0 1 /b, a* ur = -sgn i. 

Let the radius vector of the point at which the trajectory L has redcneu me piane IC = 0, 
make with the nearest ray (1.6) on acute angle y, Depending on the direction in which it is 
necessary to turn the radius vector by the angle y to superpose it on the ray, on the second 
section of trajectory L the control u1 takes, in a certain time Q, the value $1, and then 
on the third section in the same time takes the value -_l,or otherwise it takes the values 
IA,= -1 and ul= _tl on the second and third sections,respectively. 

The value of r2 is selected so that the phase point at the end of the third section of 
trajectory L reaches the ray (1.6), andtheprojection of its radius vector on the plane .z = 0 
is turned by an angle y. On the fourth section the trajectory L moveS along the ray to the 
origin of coordinates U1 = 0. 

3. Derivation of the basic result. The existence of optimal control in the class 
of integrable functions was proved in /4/ for problem (1.11, (1.2). Let L* and Lo be the 
optimal and special trajectories, issuing from point MO (x0, yo,zo), and I,* and lo be the 
functionals of the losses calculated on these trajectories. 

The estimates on which subsequent reasoning is based are obtained in Sect.4 on the 
following assumptions: 

1) the section of optimal trajectory and the special trajectory prior to reaching one of 
the rays (1.6) approach the x axis not closer than some arbitrary but fixed distance R,; 

2) the quantity fll is selected so that the following inequalities are satisfied: 

fil < Db,R,2 1 WOb’), f3, d p/14,4 

where p is the minimum angle between a pair of rays (1.6). 
We select some R, and a fairly small angle PI by condition 2). We set p2=p@rl.... 

!h ;] P‘-'B,? P -C 1 and construct around rays (1.6) regions vi(&), . . ., Vi (pa). If in the interval 
the trajectory L* runs outside region VI (&) 

&an R,, 

and does not approach the x axis Closer 
we have from estimate (2.5) 

I, > ‘lib (1 - cos &) (d, - 21/'ij; / v/T;-) (3.11 

where d, is the length of the interval IO, tl. 
Since the trajectory L* is optimal, we have I,* <I,. Taking this inequality into account, 

from (3.1) we obtain 
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d,<d,=2f/~~I~~+2~0!Ib(1-COS~l)l (3.2) 

where 6, is the upper bound of dl and 1, the upper bound of I,. The bar over a symbol, here 
and subsequently, indicates the upper bound. The estimate of I, is constructed in Sect.4, 
(4.4) which depends on the initial coordinate r,, and is independent of r,,. 

Further proof is based on upper estimates of the time intervals d,,, during which the 

phase point moving along the optimal trajectory, crosses from region Vi@,) to region Vi (fi,+l)s 
It is proved that the length of the intervals dj is majorized by a geometric progression with 

the denominator fp, where p < 1. Hence the series d,+d* +... converges to a quantity 
that is independent of the intial point M,, which means that the region of values of M, can 
be selected so that the optimal trajectories reaches one of the rays (1.6) more rapidly than 
during the time Tal (1.5). 

Let us calculate the estimate 1, by (4.4) and d, by (3.2) for some arbitrary xOa. We 
select theinitialpoint MO so that 

x0 = x00, To = 1/?/o’ + zoo > R, + d,b (3.3) 

The optimal trajectory Lo*, issuing from that initial point, will in the course of time 

2, be at a distance from the x axis of not less than Ro, since b is the maximum possible 
velocity of approach to the x axis by the phase point. From the definition (4.4) of 1, and 
condition (3..3) it follows that the time the special trajectory Lo takes to reach one of the 
rays (1.6) is less than d,. Hence prior to reaching a ray, the trajectory L,,used for com- 
parison, is also at a distance from the x axis of not less than on Ro. Thus, if the initial 
point MO is selected by using (3.3), then conditions 1) are satisfied. Consequently the 
satisfaction of inequality (3.2) requires that at some instant t1 the optimal trajectory 
passes through some point ‘$1, belonging to Vi.(&), and the inequality 

must be satisfied. 
Let us now take some point M, (j = I,.... .T- I), belonging to one of the regions Vi(fij+l), 

and draw from it on optimal trajectory Lj* and a special trajectory L,. As previously we 
arrive at the inequality 

(3.5) 

where dji, is the time interval during which the optimal trajectory issuing from IV, does 

not yet reach any of the regions Vi(pjLI), and fj is the upper estimate of the functional of 
losses on the special trajectory Lj (4.11), which is independent of the coordinates of the 
point Mj E Vi (@j). 

The estimate f, is constructed in Sect.4 so that 

fj > b (1 - COS fij)'t (3.6) 

where T is the time of motion of the phase point on the special trajectory LI from Jlj to 
the ray. It follows from (3.6) and (3.5) that r<dj. Hence, if the coordinates of ii/j are 
such that 

rj = 1/?J,2 + Zj’ > Ro + iij+,b, (3.7) 

then conditions 1) are satisfied. By virtue of (3.5) some point iIf,+ can be found on the 

optimal trajectory Lj* that belongs to one of the regions vi (Bi+l)t and the transition time 
from M, to nrj+, will not exceed Jj+,. 

We select a point fil,such that 

(3.8) 

and draw from it the optimal trajectory L*. 
Since the coordinates of MO satisfy condition (3.3), the phase point issuing from MO 

at instant to, reaches not later than at the instant t, t d, some point hf, of one of the 
regions V, (f&). The coordinates of M, evidently satisfy condition (3.7) when j = 1, hence 
the optimal trajectory will appear at point M, of one of the regions Vi (p.J not later than 
at the instant t,, +d, $- d,. Then the optimal trajectory L* will pass consecutively through 
the points of regions Vi (pj), until at the instant t, it reaches the point M, belonging to 
one of the regions Vi(pI), and 
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(3.9) 

We shall show that t, is a bounded quantity as s+ 00. 
Substituting into (3.5) the estimate of 11 from (4.11), we obtain 

bj+l < ST/rjJ& X (1 i cp-'It) ifb,D, j = 1, 2, . . .; c = 17 (3.10) 

Since fjj form a geometric progression with p( 1, as its denominator, the series under 
the summation sign in (3.9) converges. Its sum can be evaluated from above as the sume of a 
geometric progression with the general term (3.10). Substituting this sum and a, into (3.9) 
we have from (3.2) and (4.4). 

where t* is the exact boundary of the sequence tl, and =,,a, are constants. 
The conditions (3.8) for selecting the point M,, taking (3.11) into account can be written 

for any x0, and arbitrarily large s in the form 

b-’ I/y,,* i- 2; 9 a3 + (z* - to) = al 1 20 1 i a2 -t ~3 (3.12) 

(I~ = Rolb 

When the coordinates of the point M,satisfy condition (3.12), then for any E>O a 
reasonably large s can be found so that the optimal trajectory L*,in a time d* not exceeding 

a” = i* - to = a, I x0 I + (I2 (3.13) 

will be at pointM,,distant from one of the rays (1.6) by an amount smaller than E. After the 
instant 2* and up to the instant of arrival at the origin of coordinates, the segment of 
the optimal trajectory of length exceeding R, coincides with the ray. The basic theorem is 
completely proved. 

Consider the optimal solutions reaching the ray from the point of view of the necessary 
conditions of the optimality of the maximum principle. 

We introduce the inverse time r so as to have the phase 
point at instant T = 0 at the origin of coordinates. Denoting 
differentiation with respect to T by a prime, we will write the 
basic and the ancilliary equation of system (1.1) in the form 

x' = -b,u,, y’ = Dxz - bou.. (3.14) 
- - z’ = -Dxy - b,u, 

h,’ = -D+ + Dyh,, 

AU’ = Dxh,, h,’ = -Dxh, 

and the Hamiltonian 

H = --h,b,u, t A, (Dxz - b,u,) + h, (-Dxy - ban,) (3.15) 

On the segment of the trajectory lying on one of the rays 
(1.6) and adjoining the origin of coordinates, the conditions 

z = 0, 
I 

111 = 0, h, = 0, h,' = 0 (3.16) 

,I* = --sgn yT ug = -sgn z 

Fig.2 
must be satisfied. 

The analysis of relations (3.14)-(3.16) shows that there 
cannot be a section of optimal trajectory with continuous control of finite length, at the 
end of which the trajectory reaches a ray /4/. Indeed, suppose that in the reverse motion 
at the instant when the phase point is on a ray and the conditions (3.16) are satisfied, for 

example, the positive control u1 is switched on for a brief time A. Then, by virtue of (3.141, 
during the time A i 2 the quantities h,' and h, acquire positive values and the conditions 
for a maximum with respect to control is not satisfied. 

Using the idea in /3/, we can show that on optimal trajectories that reach the rays (1.6) 
there cannot betwoconsecutive reversals of u1 executed strictly on one side of the Plane 
5 = 0. 

The optimal trajectory may be represented in the form of a helix winding on ray (1.6) 
(Fig.2), whose pitch and diameter tend simultaneously to zero, and the accumulation point lies 
at a finite distance from the origin of coordinates. The phase point reaches the ray after 
an infinite number of switchings u1 executed in a finite time. A so-called singular solution 
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of the second kind is obtained /5/. 
With two consecutive intersections of the plane z = 0 by the optimal trajectory the 

angular distance of the phase point vector from the ray diminishes more than 17 times, if it 
is fairly small. 

4. Estimate of losses on trajectories. On the special trajectory L,issuing from 
point (tTy,~) losses occur only on the first three of its sections. We have the obvious 
estimate 

Z 4 b I(1 - cos ~1) 15 1 / b, + 2 (1 - CM Yz) 7~1 (4.1) 

where A is the maximum acute angle in the first section between the projection of the control 
vector on the f= 0 plane and the vector (O.-$,--r), and yz is the similar maximum angle in 
the second and third sections. 

By virtue of (1.3) and the control (2.2) , selected on the special trajectory, we have 

DI~I-bssiny/R,~8'~DllI($bsiny/II, (4.2) 

where y is the positive acute angle between the vectors (0, #,I) and (0, 4, a,), and A@ is some 
positive quantity smaller than the minimum value of r on the first three sections of the 
trajectory L. 

Integrating the lower estimate of 8‘ (4.2) on the second and third sections of trajectory 
L, we obtain 

2 (Db,z,* / 2 - br, sin yz i R,) dye (4.3) 

where y0 is the angle between the radius vector of the point at the beginning of the second 
section of trajectory L and its nearest ray (1.6). 

When estimating the functional ofthelosses I, we see pa = y, = yp = IT I2 in (4.1) and 
(4.2). Then 

I,, < 1, = bllte It bx+ =,I (4.4) 

T, = (b -t_ fb2 + ‘/anDbl / W$,)) 

For the estimate Zt,j>O we shall estimate more precisely the angles tc,yl,~p and ~~ 
Since the point nr,,j>O belongs to one of the regions V,(pj), integrating the upper estimate 
of 9' (4.2), we obtain on the first section 

(4.5) 

For further estimates it is necessary to introduce relation between R, and Bj. We assume 

fit < Db&,z a (100b2) (4.6) 

Substituting into (4.5) the value of hi from (2.4) and taking into account (4.6), we 
obtain 

Yi < GPj, CX = 139 (4.7) 

At the beginning of the second section of L, the angle p may increase at the rate of 
y' Q b siny / R. -D It/ during the time rg b siny,/ (R,Db,). From this it follows that 

~2 < ~1 + (buz)* I GWW) (4.8) 

This inequality is not satisfied when Y2 = 2Bj* This can be checked by substituting 
estimates (4.6) and (4.7) into (4.8). Hence we have 

Pa < C2Bjz C* = 2 (4.9) 

From (4.3), using (4.6), (4.7) and (4.9) andtheinequality ~~>y,,, we have 

~z< Cal’bj / (Db,), CS = 0, iC* + I/C, Jr OvOiC, = 176 (4.10) 

Substituting (2.4) and estimates (4.7), (4.9), and (4.10) into (4.1), we obtain the 
estimate 

Z, < C,#,*l'&i u'oa,. CI = (0,5X,* + C,*C,) = 8,4 (4.11) 

To prove inequality (2.5) we divide the interval [t_,t+~ into sections [f_, @I? It'. @I, . . ., 
It", $+I. The quantities tl(j= ~,...,IL) are determined consecutively as 

10 = t_, ti = G-1 + .j, tn+1 zz t+ 

The quantity 2(j= i,...,n$if as the root of the equation oZ(@)tj= 48, where ef(e) is 
defined as &~~(a) = L)ZZf - b sin a / Rc, HZ = may f@j &I :4.12) 
In (4.12) zjmIn denotes theexactlowerlimitof ItI in the interval I$-', t'l. Thequantity oi(@) is the 
lowerestimate of the angularvelocityofthephasepointinsideofdihedral angles B when y<p. 

The number of intervals is such that t"-f~"~'>,t+, t"<t+. 
Let us estimate the integral of losses Z' on one of the segments fI*,+l. Faux cases are 

possible: 1) the trajectory lies on the segment outside the angles B; 2) the trajectory passes 
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on the segment from the dihedral angle B on one side of plane ==o into the dihedral angle 
B on the other side of that plane; 3) the trajectory on the segment [$-',&I belongs, if only 

partly, to only one angle B on one side of the plane X= 0; and 4) the trajectory on this 
segment passes from one dihedral angle Bi to another dihedral angle Bl. 

To obtain the lower estimate of Ij,we use the estimates: 6(t)>o when y<a: &(t)>,b(l- 
coa 8) when b<v<T>, and d (t)> b (i - cos B) when y >,yJ, where tj is the root of the equation 
Qlj (v) = 0. In cases 3) and 4) we use inequality (4.6) , and in case 4 - the condition p,<fi14, 
4, where p is the smallest angle between the rays (1.6). Summarizing the estimates Ij over 
all segments (Q-1, t'), j = 1, ., it + 1, we obtain the inequality (2.5) required. 

In duscussing this paper the lateV.M.,Alekseyev,V.I. Gurman. V.A. Egorov, and V.B. 
Kolmanovskii made a number of comments for which the authors are grateful. 
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THE POINCARi. AND POINCARi - CHETAYEV EQUATIONS* 

L.M. MAPXBASHOV 

Poincarg's theory of equations in group variables /l/ has been developed 
by Chetayev /2/, by his students, and in a number of other investigations. 
Certain simple observations are made on the Poincare and Poincar&-Chetayev 
(PC) equations which should be useful in the application and further study 
of these equations. 

The equations of motion of a mechanical conservative holonomic system with independent 
coordinates Y~,...,I, written in the form proposed by Poincar;, have the form 

-$LEij(I)qj, kj,a=l, . . ..s 

c?Jc* $Tiy t ) = &a -g + xi.L* 
, 

(0.1) 

(0.2) 

Here L* (z,?)) is the Lagrange function, nl,...,ns are the Poincar: parameters, and 
repeated indices denote summation. The operators 

xi = Ej" (5) & > 
(0.3) 

form the basis of a certain s-dimensional Lie algebra which we will call algebra A 

[Xi, Xpl = clkaXD, i, k, cz = 1, . . ., s (0.4) 

The structural constants are skew symmetric (cir" -Ckia) and satisfy the Jacobi conditions 

Cik"Cajt + CkjaCaie + CjiaC&=O (0.5) 

It is assumed that the local group of transformations of the configurational space (51, 
. . .( %I corresponding to algebra A is transitive, i.e. the following condition holds at the 
general position points: 

det (Eij (r))# 0 (0.6) 

AS to the rest, the operators (0.3) are arbitrary, so that for a given mechanical system 
*Prikl.Matem.Mekhan.,49,1,43-55,198s 


